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Abstract—Deep Learning is a superb way to solve remote
sensing related problems, which mainly cover four perspectives:
image processing, pixel-based classification, target recognition
and scene understanding. In this paper, we focus on target
recognition by building deep learning models, and our target is
sequence pattern. Accurate prediction of sequence pattern would
help identify significant characters from text sequence. Despite
considerable advances in using machine learning techniques for
sequence pattern recognition problem, its efficiency is still limited
because of its involving extensive manual feature engineering in
the process of features extraction from raw sequences. Thus, we
apply a deep learning approach in sequence pattern recognition
problem. The sequences of the datasets we used are self-generated
genomic format sequences, and each dataset is generated based
on a kind of pattern. We then investigate and construct various
deep neural network models (such as convolutional networks,
recurrent networks and a hybrid of convolutional and recurrent
networks). The one-hot encoding method that preserves the vital
position information of each character is presented to represent
sequences as inputs to the models. The sequence patterns are
then extracted from the input and output the probabilities of the
existence of sequence patterns. Experimental results demonstrate
that the deep learning approaches can achieve high accuracy
and high precision in sequence pattern recognition. In addition,
a saliency-map-based method is applied to visualize the learned
sequence patterns. In view of the simulation results, we believe
that we can find an appropriate deep learning model for a certain
sequence sensing problem.

Index Terms—deep learning; machine learning; sensing; se-
quence pattern; feature extraction

I. INTRODUCTION

Traditional machine learning methods become popular and
have been used in many research areas [1]-[3]. However,
they use predefined features to represent sequences, which
requires in-depth domain knowledge and involves extensive
manual feature engineering. In addition, the loss of each
character’s essential position information in the sequence
would affect the performance of prediction [4], [5]. With
the growing availability of large-scale datasets and advanced
computational techniques, a lot of research works apply deep
learning models to understand genome regulatory instructions
directly from gene sequences without pre-defined features, to
predict the unknown sequences profile [6]-[8]. In view of
this, we consider utilizing deep learning models for a more
general problem: sequence pattern recognition. We intend
to use the sequences themselves as inputs for training. We
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generated several datasets of sequences with different patterns
and trained the three constructed deep learning models based
on the simulated datasets.

Deep learning has been widely used and has become one
of the effective methods to detect complicated patterns from
feature-rich datasets. A special deep learning model - con-
volutional neural network (CNN) can achieve superb results
in computer vision, natural language processing (NLP), and
speech recognition because of its effective and efficient feature
extraction capability on highly challenging datasets [9], [10].
CNN architectures are appropriate for multi-dimensional and
high-dimensional data and have already been applied as the
premier model in piles of genomics problems, such as motif
or functional activity discovery [6], [7], [11], [12]. Alternative
deep learning architectures could also be considered, such
as recurrent neural network (RNN) model and the hybrid
combination of CNN and RNN (CNN-RNN) model. For
example, DanQ is a hybrid framework that combines convo-
lutional and bi-directional long short-term memory recurrent
neural network for sequence pattern discovery [8]. In RNN,
the connections between units can form a directed cycle,
which allows it to exhibit dynamic temporal behavior. Unlike
feedforward neural networks, RNNs allow modeling arbitrary
sequences of inputs and capturing long-range interactions
within the sequence, such as text, speech, protein or genomic
sequences. Suitable for modeling sequential data, RNNs have
been widely applied to solve a variety of machine learning
problems in natural language processing(NLP), such as trans-
lation, named entity recognition and sentiment analysis. It
is more challenging to train RNNs than CNNs because that
an incorrect parameter initialization can lead to vanishing or
exploding gradients. Various complex models can be built by
combining different architectures. RNNs and CNNs can be
combined in many kinds of ways. For example, CNNs can be
combined with RNNs for training image data, where CNNs
encode the images and RNNs generate the corresponding
image description. Here, we present a general architecture with
convolutional feature extractors applied on the input followed
by RNNs applied on top of the output of CNNs and then
followed by fully connected layers on top of the output of
RNNS. In the following paragraphs, we show the performance
of these models based on several datasets of different sequence
patterns.

The models we applied do not separate the feature extraction



and model training. They learn predictive sequence patterns in
a data-driven manner. In this work we make three contribu-
tions: firstly, we apply deep learning to recognize different
kinds of sequence patterns, which is a novel approach for
sequence pattern recognition. Secondly, it is shown that deep
learning models could automatically learn patterns without
involving extensive manual feature engineering, which really
saves a lot of efforts. The models first obtain low-layer
patterns from sequences and then form high-level complex
features through nonlinear transformation layers. Furthermore,
we apply a saliency map to visualize the learned sequence
patterns. The third contribution is shown that our proposed
models can achieve high accuracy and high AUC. We first train
the model on the datasets of self-generated sequences and then
fine-tune the model parameters to obtain optimal models. We
then evaluate the models by six performance measurements:
AUC, MCC, accuracy, Sn, Sp and F-score. This can help us
find an appropriate deep learning model for a special sequence
pattern.

The rest of the paper is organized as follows: in Section
II, we introduce the background, present the architectures
and explain technical details. Furthermore, the raw data pre-
processing method, experimental settings and results are re-
ported in Section III. Finally, Section IV concludes the paper
and provides an outlook to future work.

II. METHODS
A. Background

CNN is a kind of multilayer neural networks, which ex-
ecutes a sequence of functional transformations through a
sequential layer-by-layer structure. In CNNs, the number of
parameters is less than a fully connected network by applying
convolutional operations to several small parts of the input
with parameters shared between them. The neurons of the
convolutional layer can search for pattern segments and combi-
nations. The deeper layers can inform the convolutional layer
which patterns are most meaningful and relevant. A convo-
lutional layer consists of multiple maps of neurons, which
are called feature maps or kernels. Distinctive feature maps
are integral components of the layered architecture and might
capture short and recurring sequence patterns. Generally, a
kernel refers to an operator applied to the entirety of the
processed input sequence data such that it transforms the
encoded information. There are a set of kernels convolved
across the input volume to gain a lower-dimensional output,
which is called “activation maps”. The distance that the kernel
is moved across the input data from the previous layer is
the stride, which is often equal to the size of the receptive
field to avoid any overlap. They follow a sequence of one
or more convolutional layers and are intended to consolidate
the features learned and expressed in the previous layers’
feature map. The max pooling layer is used to summarize
the activations of a number of adjacent neurons by their
maximum value, which can help reduce the overfitting of
the training data for the model. Fully connected layers are
utilized at the end of the network after feature extraction

and consolidation, which are performed by the convolutional
and pooling layers to create final nonlinear combinations of
features. Batch size is the number of samples’ each time we
fetch from the training set. More training data are generated
by looping through the complete genomic sequence data with
multiple passes, which are called “epochs”. Using dropout
[13] as regularization, the network can be less sensitive to
the specific weights of neurons so that multiple independent
internal representations can be learned by the network. This
makes the network better generalized and less likely to overfit
the training data. During the training processing, dropout
can be applied to reduce overfitting through inactivating a
proportion of neurons. Usually, a sigmoid function is used
to model binary outputs, while a softmax function is to model
categorical outputs. RNNs are a network of neuron-like nodes
with each one has a directed connection to every other node.
Long Short Term Memory network (LSTM) [14] is a special
kind of RNN, which can learn long-term dependencies. Just
like all RNNs, LSTM has the form of a chain of repeated
modules of the neural network. But the module has a different
structure.

B. Model Construction

For the sequence pattern recognition problem, we illustrate
three deep learning models: a CNN model, which consists of
one convolutional layer to identify predictive characters from
the context of genomic sequences and two fully connected
hidden layers to model their interactions; a RNN model,
which consists of two LSTM layers and two full connected
layers with each LSTM layer contains 16 neurons; a CNN-
RNN model, which consists of two convolutional layers, one
max-pooling layer, one LSTM layer and two full connected
layers. For example, in CNN, the convolutional layer op-
erates directly on the bit matrices, where the convolutional
filters scan for motifs. Fully-connected layers with dropout
perform a linear transformation to a vector of 64 elements that
represents the target cells. While in CNN-RNN model, the
number of convolutional-pooling layers is a hyperparameter
that can be tuned according to the performance evaluated
on the validation set. With several convolutional and pooling
operations, the model is designed to extract features from
high-dimensional inputs while keeping the number of model
parameters tractable. Each of these layers is accompanied
by a sub-sampling layer, which is for extracting features
from representation matrixes of sequences. Subsequent max-
pooling layer and batch normalization layer are used for
dimension reduction and convergence acceleration. We set
the pooling size as 2 and the stride as 2 to ensure that
there is no overlap. Additional convolutional layers model
the interaction between motifs in previous layers and obtain
high-level features. The extracted features were then trans-
formed into a vector that represents the targets of a fully
connected neural network layer which contains 64 hidden
neurons with a rectifier activation function. A task-specific
activation function “sigmoid” maps this vector to the range
[0,1], where the elements serve as probability predictions of



sequence patterns existence, to be compared via a loss function
to the true value vector. The encoded bit matrix is passed to
a one-dimensional convolutional layer, which acts as a motif
scanner across the input matrix and computes the activation
of multiple convolutional filters at every position within the
DNA sequence window. Then an output matrix with a row
for each one-dimensional convolutional kernel is produced.
Fig 1 shows the graphical illustration of these models. Model
parameters are initialized randomly following the approach in
the paper [15]. Model hyperparameters were optimized on the
validation set by random sampling. Validation loss is measured
by each epoch’s training to monitor convergence. Dropout
with different dropout rates for the sequence was used for
additional regularization Dropout is not suitable to be located
in the last fully connected layer, which can lead to the loss of
some significant features. Thus we applied dropout between
the hidden layers.
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Fig. 1. A graphical illustration of the CNN, RNN and CNN-RNN model

III. EXPERIMENTS AND RESULTS

In this section, we describe the experimental settings, the
platform, and packages used for building models as well as
the evaluation performance comparing with the acknowledged
state-of-the-art approaches.

A. Data Source and Data Preprocessing

Most of the successful deep learning methods need suffi-
cient labeled training samples for supervised because better

Output layer

performance can usually be achieved based on more data with
informative features. The sequence datasets utilized in our
experiments are generated based on three kinds of patterns,
as shown in Table 1. For example, the first pattern can be
“AAAAAAAA” with a fixed starting position for all the
sequences. The second pattern can be “AAAAAAAA” with
a different starting position among all the sequences. The
starting position is randomly generated within the range [O,
86]. The third pattern can be “ATGCCGTA” or “TACGTAAT-
GCAT” with a fixed starting position for all the sequences. But
the characters are not fixed and they can be any palindrome
format string (each character can only be A, C, G or T), which
means the palindrome pattern in each sequence can be totally
different. To generate the sequence datasets, we first generate
400k sequence samples for each sequence pattern, which is for
generating positive samples. Positive samples are generated
by random sampling from each 400k dataset with a certain
sequence pattern. We also generate 400k sequence samples
randomly with no patterns, from which negative samples are
generated by random sampling. The number of both positive
samples and negative samples are 200k. All experimental
samples are sequences with a length of 100 base pairs and
belong to “Positive” or “Negative” class. Samples in “Positive”
class contain regions wrapping around sequence patterns. In
contrast, samples in “Negative” class do not contain them.

Using one-hot encoding method, the raw sequence is then
encoded into a bit matrix with each character in the sequence
represented as a four-element binary vector. To make it simple,
in our simulation experiment, we assume the sequence is
genomic format sequence, which means each sequence has
four kinds of characters: A, C, G, T. We encoded each char-
acter numerically as one of the binary vectors: A=[1,0,0,0],
C=[0,1,0,0]; G=[0,0,1,0]; T=[0,0,0,1]. Then each sequence can
then be represented as an encoded bit-matrix 4 x 100, with
columns corresponding to A, C, G and T. With this method, the
vital position information of each character can be preserved
in sequences.

In machine learning, datasets need to be split as training
data, validation data and test data to avoid overfitting and
assure that the model will generalize to new data. We holdout
validation dataset and partition our entire dataset into a training
set, a validation set, and a test set. Weights and parameters of
the models are both learned from the training set and evaluated
on the validation set. The model which performs best will then
evaluated on the test set to quantify the performance.

B. Model Training and Testing

After data preparing, we applied the designed deep learning
models with different architectures in Section 2 on our pre-
pared data. The goal of model training is to find the parameters
that can minimize the objective function. However, it is
challenging due to its high-dimensional and non-convex. The
objective function can measure the fit between the predictions
and the actual observations. In general, model parameters
should be initialized randomly to avoid local optima deter-
mined by a fixed initialization [15], [16]. To train the models,



TABLE I
SETTING OF THE THREE KINDS OF SEQUENCE PATTERNS

Pattern Parameters

No. | Patterns’ lengths Characters

Positions

length [6,14]

consecutive same characters (e.g. AAAAAA)

starting position of pattern is fixed

length [6,14]

consecutive same characters (e.g. AAAAAA)

starting position of pattern is randomly generated

W —

length [8,14]

randomly generated palindrome string (e.g. AGTCCTGA)

starting position of pattern is fixed

we need to tune the parameters (such as the number of hidden
neurons, the number of kernels, the kernel size, the dropout
rate, the learning rate, etc.) based on the performance of
validation dataset. During the training, dropout regularization,
ReLU activations, and batch normalization were typically
used to optimize the update procedure. Then the model with
the best performance on the validation set is chosen. Thus,
the models we trained using the stochastic gradient descent
optimizer with a minibatch size of 128 to minimize the average
multi-task binary cross entropy loss function on the training
set. The models will evaluate the average multi-task cross
entropy loss on the validation set at the end of each epoch
to monitor the progress of training. We set the parameters to
schedule the training times of the models for 1000 epochs
but may early stop if the validation loss did not decrease
over 100 consecutive epochs. Dropout is the most common
regularization technique and often one of the key ingredients
to training deep models. The dropout rate corresponds to the
probability that a neuron is dropped out, where 0.5 is a sensible
default value. Between these two convolutional layers, we
used dropout to randomly exclude 40% of neurons in the
layer in order to reduce overfitting. The training speed will
be increased as the batch size increased and the memory
usage decreased as the batch size decreased. It is important for
training complex models on memory-limited GPUs. Various
learning rates are usually explored on a logarithmic scale such
as 0.1, 0.01, or 0.001, with 0.01 as initial training value [17].
The optimal learning rate and batch size usually affect each
other, for instance, larger batch sizes always require smaller
learning rates. Learning rate decay over each update during
training. In our simulation experiment, the loss function was
optimized by mini-batch stochastic gradient descent with a
batch size of 128 and a global learning rate of 0.01. The
learning rate was adopted by SGD and decayed by a default
factor of 0.9 after each epoch.

Here, training is stopped as soon as the validation perfor-
mance starts to saturate or deteriorate, and the parameters with
the best performance on the validation set are chosen. Since
the best hyperparameter configuration is data and application
dependent, models with different configurations should be
trained and their performance should be evaluated on a valida-
tion set. As the number of configurations grows exponentially
with the number of hyperparameters, trying all of them is
impossible in practice. It is therefore recommended to optimize
the most important hyperparameters such as the learning rate,
batch size, or length of convolutional filters independently via
line search (trying different values while keeping all other

hyperparameters constant). The refined hyperparameter space
can then be further explored by random sampling, and settings
with the best performance on the validation set are chosen.
Hyperopt [18] can automatically explore the hyperparameter
space using Bayesian optimization, which we applied to tune
the parameters for our models.

Several popular deep learning frameworks, such as Theano,
TensorFlow, Caffe, and Torch, have been developed for build-
ing neural networks from existing module on a high level.
The frameworks differ from each other by their modularity,
ease of use and the way models are defined and trained. Our
approach was built in Keras 2.0.8, running on top of a Theano
0.9.0 backend. Keras [19] is a a neural networks python library
which runs on top of Theano or TensorFlow. Keras provides a
highly modular neural networks API to develop and evaluate
deep learning models. Keras is mainly designed for CNN
and RNN. Theano [20] is a linear algebra compiler which
optimizes mathematical computations and provides efficient
low-level implementations. With Keras, we can quickly define
and implement different complex deep learning models. Our
prediction models were implemented in Python.

C. Prediction Assessment

Six major performance metrics are used to evaluate the
prediction method. They are Sensitivity/ Recall (Sn) [21],
Specificity (Sp), Precision, Accuracy (ACC), Matthew’s cor-
relation coefficient (MCC), and F-score. By applying the
recognition function we identify correctly TP (true positive)
samples and TN (true positive) samples. At the same time,
FP (false positive) positive samples were incorrectly classified
as negative samples and FN (false negative) negative samples
were incorrectly classified as positive samples. S,, measures
the fraction of the true positive samples which are correctly
predicted. S, measures the fraction of the predicted positive
samples which are correct amongst those predicted. Accuracy
(ACC) measures the average of positive and negative samples,
without considering the possible difference inside them. A bet-
ter measurement MCC considers the relation between correctly
predictive positives and negatives as well as false positives and
negatives. MCC measures a correlation coefficient between
trained and tested datasets. In addition, we adopt AUC (area
under the receiver operating characteristic curve) to assess the
performance as well. AUC is the expectation that a uniformly
drawn random positive is ranked before a uniformly drawn
random negative, which is commonly used as a baseline to
determine if the model is useful. F-score is applied as the
weighted harmonic mean of precision and recall. The higher



f-score is, the higher both precision and recall are. For each
performance metric, we considered the sequences containing
sequence patterns as the positive class and the sequences
with no sequence patterns as the negative class. As a binary
classification, positive sequences specificity corresponds to the
negative sequences sensitivity (and conversely).
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D. Experiments on Model Comparison

To achieve a fair comparison, we used the same datasets for
training and compared the performance among the three pro-
posed deep learning models: a regular CNN model, a regular
RNN model and a CNN-RNN combined model. All models
were fit on the training set, hyperparameters were optimized
on the validation set, and the final model performance was
reported on the test set. Since all the three models can get an
accuracy and precision at 100% on the first sequence pattern,
we only show the performance results of the second pattern
and the third pattern. The summary of experimental results
evaluated based on the prediction assessments is shown in
Fig 2. To see the results clearly, we set the y-axis from 0.85
in the 2nd pattern and 0.9 in the 3rd pattern. From the Fig. 2
(a) we can find that the CNN-RNN combined model performs
better over the other two models. Thus, the CNN-RNN model
is suitable for the consecutive same characters pattern. CNN
and help find the characters of the pattern while RNN can help
find the position of it. From the Fig. 2 (b) we can find that
the RNN model may be more appropriate for the palindrome
string format sequence, since it may help find the connection
between the previous and next characters.

To make it more understandable, Fig 3 illustrates the
saliency map of the entire sequence with extracted sequence
pattern based on CNN model, where a saliency map can only
be visualized based on convolutional neural networks. It is
observed that the signal is strong around the sequence pattern.
In Fig. 3 (a), the sequence pattern of consecutive characters
with fixed starting position can be easily extracted. In Fig.

3 (b), since the starting position of the pattern is randomly
set, the consecutive characters pattern can be at different
the positions. The signal is stronger near the consecutive
characters and forms the pattern as the figure shows. In Fig.
3 (c), the starting position of the palindrome string format
pattern is fixed, which can be easily extracted. Since the length
is randomly generated and the sequences in the dataset should
have different length of the pattern. Thus, the signal near the
ending position is not that strong. Since the pattern string is
a palindrome, the signal near the ending position also affects
the starting position.
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Fig. 2. Prediction performance comparison of three deep learning models:
CNN, RNN, and CNN-RNN.

IV. CONCLUSION AND FUTURE WORKS

Deep learning has been widely used for pattern recognition
and scene sensing problem. To our knowledge, we are the first
to implement deep learning models on the task of sequence
pattern recognition problem. To accurately characterize the
sequence patterns and to design a prediction tool considering
all the relative regions, we proposed three deep learning mod-
els for learning the sequence pattern which could generalize
to new sequence data for recognition. Using one-hot encod-
ing method for sequences representation, the deep learning
methods can gain high accuracy and high precision without
involving extensive manual feature engineering. We provided
experimental evidence showing that performance comparison
among three deep learning models: CNN, RNN and CNN-
RNN models, which can help us find an appropriate deep
learning model for a special sequence pattern. In conclusion,
this approach is a powerful way to recognize special sequence
patterns with only raw sequences provided. Encouraged by
our simulation results, we intend to evaluate the models’
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Fig. 3. A graphical illustration of the saliency map of the entire sequence for
three extracted sequence patterns based on CNN model

performance on more sequence patterns in our future work.
Furthermore, we would optimize the model by tuning a variety
of hyperparameters related to training process such as batch
size and learning rate, as well as that for model building such
as the type of hidden layers, the number of hidden layers,
the number of kernels, kernel size, and dropout rate. With
the carefully generated dataset and the accurate prediction
performance on sequence pattern, we believe it will be useful
to investigate learned patterns and create an interface showing
them.
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